Systems of Filters

(joint work with Giorgio Audrito)

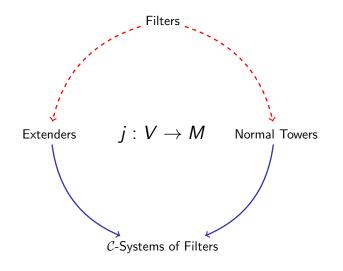
Università degli studi di Torino

Winter School in Abstract Analysis: Section of Set Theory and Topology

Hejnice January 30th - February 6th, 2016

How can we express properties of elementary embeddings?

 $F \subseteq \mathcal{P}(X)$ is a filter on X, if F is closed under supersets and finite intersections.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why Systems of Filters?

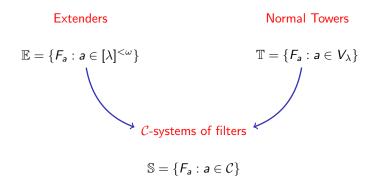
Systems of Filters:

generalize both extenders and normal towers;

provide a common framework in which properties of extenders and towers can be expressed in a coincise way.

What is a system of filters?

Indices



A set $C \in V$ is a directed set of domains iff the following holds:

- 1. Ideal property: C is closed under subsets and unions;
- 2. Transitivity: $\bigcup C$ is transitive.

In standard extenders F_a is a filter on $[\kappa_a]^{|a|}$.

$$\begin{aligned} \pi_{ba} &: [\kappa_b]^{|b|} \to [\kappa_a]^{|a|} \text{ is such that given } a, b \in [\lambda]^{<\omega} \text{ such that } \\ b &= \{\alpha_0, \dots, \alpha_n\} \supseteq a = \{\alpha_{i_0}, \dots, \alpha_{i_m}\} \text{ and } s = \{s_0, \dots, s_n\}, \\ \pi_{ba}(s) &= \{s_{i_0}, \dots, s_{i_m}\}. \end{aligned}$$

For instance if $a = \{1, \omega\}$, $b = \{0, 1, 74, \omega, \omega^3 + 1\}$, $s = \{0, 1, 2, 3, 4\}$, then $\pi_{ba}(s) = \{1, 3\}$.

We can see F_a as a filter on ${}^a\kappa_a$.

In this case π_{ba} : ${}^{b}\kappa_{b} \rightarrow {}^{a}\kappa_{a}$ is just the restriction of functions, i.e. $\pi_{ba}(f) = f \upharpoonright a$.

In standard towers F_a is a filter on $\mathcal{P}(a)$.

 $\pi_{ba}: \mathcal{P}(b) \to \mathcal{P}(a)$ is such that given $a, b \in V_{\lambda}, X \in \mathcal{P}(b), \pi_{ba}(X) = X \cap a.$

We can see F_a as a filter on $\{\pi_M : M \subseteq a\}$ (where $\pi_M : M \to V$ is the Mostowski collapse of the structure (M, \in)).

In this case π_{ba} is just the restriction of functions, i.e. $\pi_{ba}(f) = f \upharpoonright a$.

(日) (日) (日) (日) (日) (日) (日) (日)

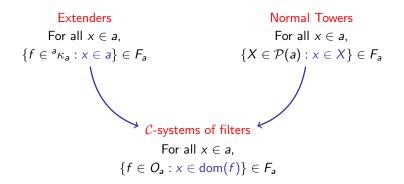
Extenders Normal Towers $\mathbb{E} = \{F_a : a \in [\lambda]^{<\omega}\}$ $\mathbb{T} = \{F_a : a \in V_\lambda\}$ F_a filter on $[\kappa_a]^{|a|}$ F_a filter on $\mathcal{P}(a)$ $\pi_{ba}(s) = s_a^b$ $\pi_{ba}(X) = X \cap a$ $A \in F_a$ iff $\pi_{ba}^{-1}[A] \in F_b$ $A \in F_a$ iff $\pi_{ha}^{-1}[A] \in F_b$ $\rightarrow C$ -systems of filters A $\mathbb{S} = \{F_a : a \in \mathcal{C}\}$ F_{2} filter on O_{2} $\pi_{ba}(f) = f \upharpoonright a$ $A \in F_a$ iff $\pi_{ha}^{-1}[A] \in F_h$ $O_a = \{\pi_M \upharpoonright (a \cap M) : M \subseteq \operatorname{trcl}(a), M \in V\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Extenders Normal Towers $\mathbb{E} = \{F_a : a \in [\lambda]^{<\omega}\}$ $\mathbb{T} = \{F_a : a \in V_\lambda\}$ F_{2} filter on ${}^{a}\kappa_{2}$ F_a filter on $\{\pi_M : M \subseteq a\}$ $\pi_{ba}(f) = f \upharpoonright a$ $\pi_{ba}(f) = f \upharpoonright a$ $A \in F_a$ iff $\pi_{ha}^{-1}[A] \in F_b$ $A \in F_a$ iff $\pi_{h_2}^{-1}[A] \in F_b$ C-systems of filters $\mathbb{S} = \{F_a : a \in \mathcal{C}\}$ F_{a} filter on O_{a} $\pi_{ba}(f) = f \upharpoonright a$ $A \in F_a$ iff $\pi_{h_2}^{-1}[A] \in F_h$

 $O_a = \{ \pi_M \upharpoonright (a \cap M) : M \subseteq \operatorname{trcl}(a), M \in V \}$

Fineness



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Normality

Extenders:

- u: A → V is regressive on A ⊆ ^aκ_a iff there exists α ∈ a such that for all f ∈ A, u(f) ∈ f(α).
- ▶ $u : A \to V$ is guessed on $B \subseteq {}^{b}\kappa_{b}$, $b \supseteq a$ iff there is a $\beta \in b$ such that for all $f \in B$, $u(\pi_{ba}(f)) = f(\beta)$.

Towers:

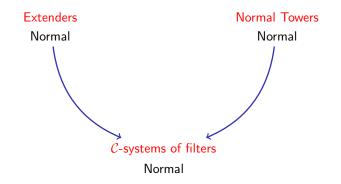
- $u: A \to V$ is regressive on $A \subseteq \mathcal{P}(a)$ iff for all $X \in A$, $u(X) \in X$.
- ▶ $u : A \to V$ is guessed on $B \subseteq \mathcal{P}(b)$, $b \supseteq a$ iff there is a $y \in b$ such that for all $X \in B$, $u(\pi_{ba}(X)) = y$.

C-System of Filters: define $x \leq y$ as $x \in y \lor x = y$.

u: A → V is regressive on A ⊆ O_a iff for all f ∈ A, u(f) ≤ f(x_f) for some x_f ∈ dom(f).

u: A → V is guessed on B ⊆ O_b, b ⊇ a iff there is a y ∈ b such that for all f ∈ B, u(π_{ba}(f)) = f(y).

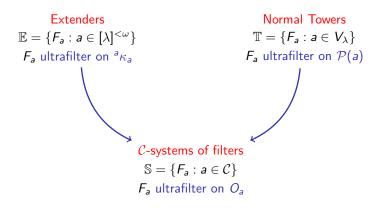
Normality



(Normality) Every function $u : A \to V$ in V that is regressive on a set $A \in I_a^+$ for some $a \in C$ is guessed on a set $B \in I_b^+$ for some $b \in C$ such that $B \subseteq \pi_{ba}^{-1}[A]$;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ultrafilter Property



 $O_a = \{\pi_M \upharpoonright (a \cap M) : M \subseteq \operatorname{trcl}(a), M \in V\}$

$\langle \kappa, \lambda \rangle$ -Systems of Filters

⟨κ, λ⟩-Extenders: F_a is κ-complete. The support κ_a is the least ξ such that [ξ]^{|a|} ∈ F_a. And
if a ⊆ b ∈ [λ]^{<ω} then
κ_a ≤ κ_b:

• if $\max(a) = \max(b)$, then $\kappa_a = \kappa_b$;

• $\kappa_{\{\kappa\}} = \kappa;$

\mathbb{S} is a $\langle \kappa, \lambda \rangle$ -system of filters if:

 κ_a is the support of a iff it is the minimum ξ such that $O_a \cap {}^aV_{\xi} \in F_a$.

• rank(
$$C$$
) = λ and $\kappa \subseteq \bigcup C$,

• $F_{\{\gamma\}}$ is principal generated by id $\restriction \{\gamma\}$ whenever $\gamma < \kappa$,

•
$$\kappa_a \leq \kappa$$
 whenever $a \in V_{\kappa+2}$.

From a system of ultrafilters to elementary embeddings

Let ${\mathcal S}$ be a ${\mathcal C}\text{-system}$ of ultrafilters, and define

$$U_{\mathcal{S}} = \{ u : O_a \to V : a \in \mathcal{C} \}$$

and the relations

$$u =_{\mathcal{S}} v \Leftrightarrow \{f \in O_c : u(\pi_{ca}(f)) = v(\pi_{cb}(f))\} \in F_c$$
$$u \in_{\mathcal{S}} v \Leftrightarrow \{f \in O_c : u(\pi_{ca}(f)) \in v(\pi_{cb}(f))\} \in F_c$$
where $O_a = \operatorname{dom}(u), O_b = \operatorname{dom}(v), c = a \cup b.$

The ultrapower of V by S is $Ult(V, S) = \langle U_S / =_S, \in_S \rangle$.

Define $j_{\mathcal{S}}: V \to \text{Ult}(V, \mathcal{S})$ by $j_{\mathcal{S}}(x) = [c_x]_{\mathcal{S}}, c_x: O_{\emptyset} \to \{x\}.$

(ロ) (国) (E) (E) (E) (O)(C)

From elementary embedding to system of ultrafilters

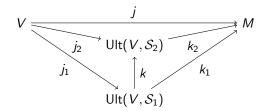
Let $j: V \to M \subseteq V[G]$ be a generic elementary embedding, $C \in V$ be a directed set of domains such that $(j \upharpoonright a)^{-1} \in M$ for all $a \in C$.

The *C*-system of ultrafilters derived from *j* is $S = \langle F_a : a \in C \rangle$ such that:

$$F_a = \left\{ A \subseteq O_a : (j \upharpoonright a)^{-1} \in j(A) \right\}.$$

C-systems of filters from a single j

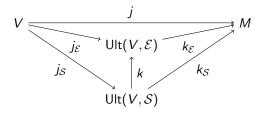
Let $j: V \to M \subseteq W$ be a generic elementary embedding definable in W, S_n be the C_n -system of V-ultrafilters derived from j for n = $1, 2, C_1 \subseteq C_2$. Then $Ult(V, S_2)$ can be factored into $Ult(V, S_1)$, and $crit(k_1) \leq crit(k_2)$ where k_1 , k_2 are the corresponding factor maps.



C-systems of filters from a single j

 $\operatorname{non}(F) = \min \{ |A| : A \in F \}. \operatorname{non}(S) = \sup \{ \operatorname{non}(F_a) + 1 : a \in C \}.$

Let $j: V \to M \subseteq W$ be a generic elementary embedding definable in W, S be the C-system of filters derived from j, \mathcal{E} be the extender of length $\lambda \supseteq j[\operatorname{non}(S)]$ derived from j. Then $\operatorname{Ult}(V, \mathcal{E})$ can be factored into $\operatorname{Ult}(V, S)$, and $\operatorname{crit}(k_{\mathcal{S}}) \leq \operatorname{crit}(k_{\mathcal{E}})$.



Generic C-Systems of ultrafilters

• Let \dot{F} be a \mathbb{B} -name for an ultrafilter on $\mathcal{P}^{V}(X)$. Define

$$\mathbf{I}(\dot{F}) = \left\{ Y \subset X : \left[\left[\check{Y} \in \dot{F} \right] \right] = \mathbf{0}_{\mathbb{B}} \right\}$$

Let *I* be an ideal in *V* on *P*(*X*) and consider the poset B = *P*(*X*)/*I*. Let **F**(*I*) be the B-name defined by

$$\dot{\mathsf{F}}(I) = \left\{ \langle \check{Y}, [Y]_I \rangle : Y \subseteq X \right\}$$

Let S be a B-name for a C-system of ultrafilters. Then we define the corresponding C-system of filters in V, I(S).

► Conversely, S be a C-system of filters in V. Then we define the corresponding name for a C-system of ultrafilters, F(S).

Generic C-Systems of ultrafilters

Let \mathbb{S} be a $\langle \kappa, \lambda \rangle$ - \mathcal{C} -system of filters, \mathbb{C} be a κ -cc cBa. Define $\mathbb{S}^{\mathbb{C}} = \left\{ F_a^{\mathbb{C}} : a \in \mathcal{C} \right\}$ where $F_a^{\mathbb{C}} = \left\{ A \subseteq (O_a)^{V^{\mathbb{C}}} : \exists B \in \check{F}_a \ A \supseteq B \right\}$.

 $\mathbb{S}^{\mathbb{C}}$ is a *C*-system of filters, $\mathbb{C} * \mathbb{S}^{\mathbb{C}}$ is isomorphic to $\mathbb{S} * j(\mathbb{C})$ and the following diagram commutes.

Generic C-Systems of ultrafilters

Let \mathbb{S} be a $\langle \kappa, \lambda \rangle$ - \mathcal{C} -system of filters, \mathbb{C} be a κ -cc cBa. Define $\mathbb{S}^{\mathbb{C}} = \left\{ F_a^{\mathbb{C}} : a \in \mathcal{C} \right\}$ where $F_a^{\mathbb{C}} = \left\{ A \subseteq (O_a)^{V^{\mathbb{C}}} : \exists B \in \check{F}_a \ A \supseteq B \right\}$.

 $\mathbb{S}^{\mathbb{C}}$ is a *C*-system of filters, $\mathbb{C} * \mathbb{S}^{\mathbb{C}}$ is isomorphic to $\mathbb{S} * j(\mathbb{C})$ and the following diagram commutes.

Thank you!